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Periodic Orbits about an Oblate Planet

by

Richard B. Barrar

ABSTRACT

Periodic solutions of the equations of motion of a satellite of an oblate

planet are investigated, using methods developed by Poincar4 (1892). The

treatment covers both critical and non-critical angles.

INTRODUCTION

Much work has recently been devoted to the motion of a satellite of an

oblate planet; see Brouwer (1959), Garfinkel (1959), Kozai (1962). However,

very little attention has been paid to the existence of periodic orbits.

McMillan (1910) discussed periodic orbits about an oblate planet. However, all

his orbits reduce to circular orbits in the unperturbed case. In the present

paper., we apply methods developed by Poincar' (1892) to investigate periodic

orbits. We cover both critical and non-criticajl angles. It is found that the

periods are completely different at critical and non-critical angles.

Background

In order to make the presentation as clear as possible, we will treat only

the case when the planet's potential is of the form:

(1) V - (jL/r)(l-2k 2P2 (sin 0)/r )
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It will be clear to the reader that everything said will also apply to the

more general potential:

(2) V - (I/r)(1 +p 2B P p(sin P),/r p ]

In equations (1) and (2), I have used the notation of Brouwer (1959),

namely, L., k2, and Bp are physical constants. P is the latitude, r the

distance from the center of the planet. Pn(sin P) are Legendre polynomials.

In terms of the Delaunay variables, the Hamiltonian corresponding to the

potential (1) can be written (see Brouwer, 1959):

(3) F - F0 (xl) + k2 Fl,(xlx 2 ) + k2 F1 2 (xlx 2 , 1,Yly2 )

with

(4) Fo M (1/2)(u/xl)2

(5) F1 1 0 (-p./2) (1-3(x 3 /x 2 ) 2 ) )(/xlx2 ) 3

(6) F1 2  j P.i(X;,x 2 ,x 3 ) cos jy1 + J QJ(x 1,x 2 ,x 3 ) cos (jyl + 2Y2 )

where

1

x- (Ila) 2  a - semi-major axis

1

x2 - x1(1-e 2 ) 2  e - eccentricity

x3 - x2 cos I I- inclination
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Yl = mean anomaly

Y2 = argument of the pericenter

Y3 - longitude of the ascending node

(x1,x2,x3,yly 2,y3 are canonical variables in the Hamiltonian (3)). See

Poincarg § 8.

x3 is a constant in the above formulas since the conjugate momenta y3 is

not present. After xlx 2,y1,y2 have been found in the above Hamiltonian, one

can solve for y3 by the formula:

t
(7) y " (xlx2x3YlY2 )dt'*

0 3

Since (7) is merely an integration, we will restrict ourselves to solving

the problem (3) with two degrees of freedom. Thus, when we speak of periodic

solutions, we mean with respect to the four variables x1,x2,Yly 2. It will be

clear to the reader that our methods would also carry over with the addition of

x3 and Y3; butponce againto increase the clarity of presentation this added

complication will not be introduced. Now define

(8) n~ 0 Fx0)6

Any quantity throughout this paper with a superscript o will mean it is

a constant; thus y0 is a constant.
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n F l(Xi0)/ax j

If ~ 0we have

If 0, we have the so-called critical angle case. Ifn' 0wehv

the non-critical angle case.

Existence of Periodic Orbits in General

In this section we will briefly review the results of Poincre (1892) S 42

on the existence of periodic solutions. We will show that these results are not

directly applicable to the Hamiltonian arising from the motion of a satellite

of an oblate planet. In latter sections we will show how the Hamiltonian can

be transformed so that the Poincard criteria are applicable.

Poincare (1892) § 42 considers a Hamiltonian of the form:

(9) H - Ho0(ala 2) +ijlciHi(a13a 2' wlYw2 )

where a1,a2,wlW 2 are canonical variables, corresponding to our previous x's

and y's with

(10) Hi - E B(ala 2) cog (mlw I + m2w2 + h(al.a2))

and where the summation is over all integers mlm 2.

If we set e=O in (9) and solve the resulting equations of motion, we obtain

the unperturbed solution:

(1la) 
a -ao
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-o 0
(lib) Wi = n i t + d

-0 0

Poincare further assumes the a. have been so chosen that ('/-)= (p/q)
1

with p and q integers. Then considering ww 2 angle-like variables, Poincare

calls the unperturbed solution periodic of period T = 21q/n = 21p/-ni2. p may be

zero, then T = 2o/-l.

The principal problem is to find periodic solutions of the same period T, for

small values of e, that will approach the unperturbed solution as C + o.

Mathematically this can be formulated as follows. Let

(12a) ai(0) - ao + bi(C); wi(O) = do + ci(E), and

(12b) a.(T) = a* + bi(E) + i; wi(T) = do + ci(E) + no T + 4i

To insure periodicity and the desired behavior as e - o, one must determine

the ai0d0, so that i " o for all sufficiently small c, and such that

bi(C), ci(e) approach zero with E. (These are exactly the same equations that

Lefschetz (1957) p. 163 considers.)

We first point out that since H = constant is an integral with ( H/3al) 0,

it follows that if

(13) *2 (blb 2 C'e) = *l(bl,b 2,c 1,e) W *2 (blb 2 Pcle) - 0

then * will also be zero (see Siegel (1956) top of page 126 or Poincare,
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Vol. I, p. 87). Hence, we need solve only (13). Moreover by a change in t, w

may assume d1  c 1(e) 0.

For one finds

T T

() -f((dwl/dt)-n)dt .f((-6H/6al )-')dt
(14)00

- 0 + 0(e)

similarly for 02

(15) *2 (a+b )/6a2)-n-) + 0(e)

For ?2 one finds

T T

*2 " (da 2 /dt)dt -I(H/w 2 )

(16)
T

=ZJo(6Hi/w 2 )dt - e(6[H 1]/6d2) + 0(r 2 )
02

where if H1 is defined in (10) then

(17) [H 1 ] - T .'B(aoa2) cos (md 0 + m2d2 + h(ala2))

and where , means only sum over the terms where

(17a) -o+ m2 2 -0

(This follows from (16) on substituting the unperturbed solution in HI. Note4
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0

also that we assume d- 0.)

It now follows from the implicit function theorem, that if one is to

solve the three equations (13) for small values of e, the following

conditions are sufficient:

0 6 2 H o  
2H 2 H , i 2

and do a2 is so chosen that:
2 2

(19a) 3[H ( a 0 a , 0 /ad - 0

If the Poincare criteria (18) and (19) are fulfilled, we are guaranteed

periodic solutions for sufficiently small values of e. If [HI1 0 constant,

since [H1] is periodic it will always have a maximum and minimum; thus there

will always exist a d2 satisfying (19a), (19b).

Let us now see where the Hamiltonian (3)"fails to fit these criteria. The

obvious choice for H0 H1 is (using the definitions (3), (4), (5), (8)) (we

clearly equate xi with ai. and yi with Wi):

(20) H 0 F + k2H -e F1 2

where in (20) we consider k2 as a fixed quantity, c as variable. Thus (see (llc))
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1 -0

(21) i - no + 1 - kn 21 n1 k 2n 1; 2 2 2

With this definition of H0 it follows that the development in the present

section is applicable. Furthermore, it follows that for most values of

0 0 0a 1,a2,a3 (18) is fulfilled; for those values where (18) is not fulfilled one

can treat the square of the Hamiltonian as suggested by Poincard § 43 to obtain

a new Hamiltonian where (18) is fulfilled. Hence (18) causes no trouble.

It is (19b) that is not fulfilled. From (6) it follows that m2 is either

--o0 or 2; from (21) it follows that n2 is a very small number. Hence there are

no terms in H1, where (17a) is fulfilled; thus [H1] m 0, and (19b) is not

fulfilled.

In the next section we will introduce a transformation that will convert

the Hamiltonian (3) to one where the criteria (18), (19) are fulfilled.

Tle Poincare--von-Zeipel Transformation

It is clear that if [F1] m 0, perhaps if we develop in powers of e we

will eventually come to a term corresponding to (F1] that will not be identically

zero. The most straightforward way to do this is by what is now known as the

von-Zeipel transformation. However, it should be mentioned that practically

the whole of Poincare (1893) Volume II is devoted to this same type of trans-

formation. We follow principally Poincare' §134 and §125 in our development.

Let

Pj
(22) Ep E=CJS (a ,a 2 ,yY 2 )

p J-o jV



9 January 1963 9 SP-1067/000/00

with

(23) So M alyI + a2 Y2

Now consider the partial differential equation:

(24) F(3/3yl'6Ep/3Y2'Yl3y 2 ) = Co(a I ) + ECl(ala 2 ) ...

+ EPcp(ala 2 )

where F is the Hamiltonian (3) (with k2 changed to e), and the Ci(ala 2) are

to be determined.

If like powers of e are equated in (24), one finds the series of equations

(25) Fo(a 1 ) = Co(a 1 )

(26) n0(3 S/ Y 1 ) = n(S 2  + q(S 1 /Y 2 ) + - C (ala 2 )

with 4' a polynomial of the j-th degree in (6Sk/6Yi) k < J-1, the coefficients of

this polynomial being either nFo(al)/3xn or PF.l(ala a)/aqxlaP'qx

and

non ' aFo(al)/ x I0

(27) n2 = 3Fll(ai)/ x2

1
q2 M 3F 12 (aiyi)/& 

2

To any solution S(I) of (26), we can always add on a solution S(2) that

only depends on y2 .
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Let us first proceed formally and assume at some stage we have computed
(1)(2). andS ) .

So0...,.2, and S i). We now use equation (26) to compute -"and Sl

Since 0' is assumed known we have:

2 1(6Sj./6Y2) + 0 = E A(al,a 2 ) cos (m 1 + m2 y2 + h(a, a2 ))

(28) + E A'(al,a 2 ) cos (m2Y2 + h(al, a2))

+ C'(al,a 2 )

Now determine Cj(al;a 2 ) and S(2) to eliminate the last two terms on the

right-hand side; thus q
(29) C (al,a 2) = C' (al,a 2 )

(30) S(2) . .E (A.(a,a2)/m n1 ) sin (my + h(ala))
i m 2 o 

2 2 2  22 2

If Sj l - S() + S(2) is used in (28) rather than S(
1
)  then since q

has only terms which depend on y,, only the first series on the right-hand

side is affected. Thus with (28), (29), (30) inserted in (26) we may choose

a solution S(l) of the form:

j

(31) S I ) = - E (A(al, a2 )/mlnI) sin (mly 1 + m2Y2 + h(al,a2))ml~o

With this method of iteration we determine Sl ...IS p. Away from the

critical angle both ol U
nln 2 are 0(l); hence there are no small divisors in (30), (31).
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The above formal method of proceeding can be fully justified. First we

note that the sum in (30) contains only a finite number of terms; hence term

by term integration is permissible.

The justification of term-by-term integration in (31) is slightly more

involved. First we recall that essentially F1 = (a/r)3 + (a/r)3 cos 2(f+y,2)

and then the following formulas (see Brouwer 1959, Wintiner 1947):

(a/r) = 1+2 n i n (ne) cos ny1

cos f - -e + (l-e)n'J (ne) cos ny

sin f 2 1/2 ne ny
sin f - (l-e ) i=ni 'Jn_1 ( n e ) sin ny I

6/6xI = (1/exl) (x2/xl)2 (/3e)

6*/6x2 = -(1/ex 1)(x2/xl) (&f/6e)

6(a/r)/6e = (a/r)2 cos f

3f/6e = ((a/r) + (x1/x2)2) sin f

From these formulas, together with the estimates for Jm(mz) given in

Wintner 1947 §294, plus standard theorems on the multiplication and integration

of Fourier series. it follows that our formal procedure is justified.

With E j(al-a2 ), (1) s 2 ) defined as above, we follow Poincar'

in changing to new canonical variables ai.wi by the formulas:
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(32) x i - (6p/aYi)

wi M (6E p/ad

The Hamiltonian becomes:

(33) H = F(xi,Yi) = F(Ep /ayi)yi) = C0 4+CI+. .+e4°0Cp + ep+l(al.a2,Yly2,E)

where clearly 0p+l is periodic of period 2n with respect to yl1y2 and expandable

as a power series in c.

Write the change of variable equations as:

(34) x i = ai + 6(Ep-So)/6yi Yi , wi- C( PSo )/4ai

Because the S are periodic with respect to yly 2, it follow from the

above equations that if yi is changed to yi + 2kiv and wi to wi + 2kin, the

equations will not change. Hence xi and yi-Wi are periodic of period 2x with

respect to wlw 2. The Hamiltonian (33) therefore is also periodic of period

2v with respect to w1 and w2. Thus the Poincare--von-Zeipel transformation has

the very important and interesting property that it takes periodic solutions in

aiwi into periodic solutions in xiyi and vice versa. Hence, to study periodic

solutions it does not matter which set of variables we use.

In summary: xj and yj are functions of ajwi, being periodic of period

2x with respect to w1 and w2. The equations of motion with respect to the

canonical variailes aiw i comes from the Hamiltonian:
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(35) H H (al,a 2 ) + i +L Hiala2,wl,w 2 )

P i
with H0(ala2) F0 (a 1) + iElk2 Ci(al,a 2 ), and H, of the form (10).

Periodic Orbits for Non-critical Angles

We note that we started with an F I H1 of the form (10), where m2 had

only the values 0 and 2. Then if we defined [FI] = [H1 as in (17), [FI ]  0.

However, in the construction of the Poincare--von-Zeipel transformation, the

series ()Si/6yi) are multiplied with each other and in the process the range of

values of m2 grows. Thus, we may assume that for non-critical angles, we have

transformed to (35) and that we have chosen p so large that [Hp+1] 0. In

fact, it is clear from our method of construction that we may assume [Hp+I] =

A(a1,a ) cos ((p+l)d0 + h(ala 2)). Hence, the Poincare theory of periodic

__0orbits is now applicable to non-critical angles orbits, with nj defined by (35)

and (llc).

Hence, we conclude that if we assume the initial eccentricity is not zero,

(so that the PjQ in (6) does not vanish) and the initial inclination angle is

not the critical angle, then for any initial value of semi-major axis,

eccentricity, inclination and for certain values of the initial value of

perigee (those values satisfying the Poincare criteria (19)), the equations of

motion of a satellite of an oblate planet will have periodic solutions. Note

that the period for non-critical inclinations depends on the period it takes

the perigee to make one revolution.

Furthermore, since the equation giving rise to the initial value of
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perigee comes from a term of 0(ep 1 ) where p is very large, it is conjectured

that by changing the oblate planet's potential very slightly it would be

possible to assign the initial value of perigee arbitrarily and still obtain

a periodic solution.

Periodic Orbits at the Critical Angle

At the critical angle n1 - 0. However, irrespective of the value of nI

if we apply the Poincare--von-Zeipel transformation, we obtain the following

equation for S1

n 0 3SM/iyi) F F(ala 2,y,y 2) - C1 (a,a2)

Because F1 contains no terms of the form cos m2Y2, this equation is easily

solved (see Brouwer (1959) p. 380-381). Now letting p - So + S1 ) the
p 0 1'

transformed Hamiltonian is of the form (see Brouwer (1959) p. 385):

H-FAo0 a(al) + EF 1 1 (a, 2 ) + 2 (A0 (ala 2) + Al(ala 2) cos 2w2

+ E A2 (al, a2 ) cos (m1w1 + m2w2)] + 0(E3

It is possible to apply the results of Poincarg §42 directly to this

Hamiltonian. The unperturbed Hamiltonian is

Ho - F0 (a1 ) + k2 Fll(al,a 2 )

with
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n -(3Fo(a )/6a l ) - k2 ( Fll(ala 2 )/ a1)
1 k 0FI 1 2o /1

'ff 0 _k 6F(a0 a20)/6a 2

00

thus the unperturbed orbit has period T = 21/n1 (there is nothing in Poincare

§42 that does not permit -n2 = 0; in fact, in §44 he reduces the general case

to this situation).

Row CH 2  - A0 (ala 2 ) + Al(al,a 2 ) cos 2w2 and thus by the Poincare criteria

(18), (19) it follows that at the critical inclination there are periodic

orbits of period T - 27r/- for all semi-major axis values, and all eccentricities

not identically zero, and for initial values of perigee either 0 or T.

(In a private communication W. T. Kyner states that he has also

obtained this result.)

Conclusion

The existence of periodic orbits at both critical and non-critical angles

has been shown for all semi-major axis and eccentricity values and for the positions

of perigee fulfilling (19). The frequency of the periodic orbit at the critical

angle is the usual anomalistic frequency. The frequency of the periodic orbit

at non-critical angles is the frequency of the motion of perigee (draconic

frequency).

An interesting problem that remains to be discussed is how the periodic

orbits away from the critical angle will approach the periodic orbits at the critical

angle as the inclination changes.
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